Preliminary results from a 2-D hydrodynamic transport model for the lower SJR in support of the Task 8 Linkage Study

Nigel W.T. Quinn. PhD, P.E.

 ¹ HydroEcological Engineering Advanced Decision Support Berkeley National Laboratory, Berkeley, CA 94720
 ² Division of Planning, US Bureau of Reclamation Sacramento, CA 95825

TWG Monthly Meeting May 15, 2008

ACKNOWLEDGEMENTS

Gary M. Litton, PhD, P.E.

School of Engineering University of the Pacific

Thomas Heinzer and Diane Williams MPGIS, US Bureau of Reclamation

Søren Tjerry

DHI Water & Environment Portland, OR 97204

Mark S. Brunell, PhD

School of Biology
University of the Pacific

Model study reach – Vernalis to Rough and Ready monitoring station within the Stockton Deep Water Ship Canal

USCOE – cross section and bathymetry data for the 2002 San Joaquin River comprehensive study

Visualization of the cross section and bathymetry data

– bifurcation at Head of Old River (HOR)

at entry to the Deep Water Ship Canal showing bathymetry

DHI - MIKE 21c 2-D Curvilinear Hydrodynamic Model

- Solves vertically-integrated St. Venant equations on a curvilinear finite difference grid
- Fully dynamic advection-dispersion model
- Contains helical flow model of 3-D secondary currents including time and phase lag
- Sediment model simulates bed scour and deposition, cohesive sediments and alluvial resistance
- Widely used for habitat restoration and morphological studies.

Developing a steady-state flow simulation with MIKE 21c

DYE release at HOR on 9/20/2007

—— SCUFA dos reis (SJR 51.7, 2.3 mi) —— BDT (SJR 47.5: 6.5 mi)

09-23

09-24

09-25

09-26

2007-09-20

09-21

09-22

SUMMARY

- Model appears capable of simulating complex hydrodynamics of the lower San Joaquin River and Deep Water Ship Channel under low and high flow conditions
- Hydrodynamic dye trace animations reveal behaviors not readily apparent from analysis of data
- Existing model can be used to simulate algae growth, transport and decay using sediment analog

